Question
What is the Integral of #tan^2(x)/sec(x) #?
Answers
The answer is
#=ln(|tanx+secx|)-sinx+C# Explanation:
#"Reminder"#
#intsecxdx=ln(tanx+secx)+C# Therefore, the integral is
#int(tan^2xdx)/(secx)= intcosxtan^2xdx#
#=intcosx(sec^2x-1)dx#
#=int(secx-cosx)dx#
#=ln(|tanx+secx|)-sinx+C#
#int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C# Explanation:
We have:
#int tan^2(x)/(sec(x))dx# We can rewrite this as:
#int tan^(2)(x)*(sec(x))^-1dx# Remember that:
#tan^2(x)=sec^2(x)-1#
#=>int (sec^2(x)-1)*(sec(x))^-1dx#
#=>int sec(x)-(sec(x))^-1dx#
#=>int sec(x)dx-int(sec(x))^-1dx# Here, remember that
#intsec(x)dx=lnabs(sec(x)+tan(x))+C#
#=>lnabs(sec(x)+tan(x))-int(sec(x))^-1dx# (You can ignore the#C# .)Now...
What does
#sec^-1(x)# equal to?First,
#(cos(x))^-1=sec(x)# Therefore,
#sec^-1(x)=((cos(x))^-1)^-1=>cos(x)# Therefore, we now have:
#=>lnabs(sec(x)+tan(x))-intcos(x)dx# Another thing to remember is that
#intcos(x)dx=sin(x)# Therefore, we now have:
#=>lnabs(sec(x)+tan(x))-sin(x)# Do you#C# why this is incomplete?
#int tan^2(x)/(sec(x))dx=lnabs(sec(x)+tan(x))-sin(x)+C#