Question
Solve each of the following triangles (if possible). Then, find the area of each. ?=32.7°, a=37.5...
- Solve each of the following triangles (if possible). Then, find the area of each.
- ?=32.7°, a=37.5 cm, b=28.6 cm
- a=4.1 in, b=9.8 in, c=6.2 in
- Let z1=4+4i, z2=-5-5i. Find the trig form of z1 and z2. Then, find z1/z2 and z1z2
- Find all of the 6th roots of 4
- Convert the rectangular equation x2=4y to polar form
- Convert the polar equation r=2sin? to rectangular form
- Find all solutions to the equation sin2x-sinxcosx=cosx on the interval [0,2?)
Answers
Solution
1) B=32.7°, a=37.5cm, b=28.6cm
this is a special case so, first
use law of sine to find sinA
sinA/a=sinB/b
sinA=a×sinB/b=37.5×sin32.7°/28.6=0.7384
sinA<1 therefore, two triangles are possible
And A=arcsin(0.7384)=47.6°
and also, sin is positive in second quadrant
so, A=180°-47.6°=132.4°
now, solve first triangle with A=47.6°
By angle sum property of triangle
C=180°-A-B=180°-47.6°-32.7°=99.7°
use law of sine
sinC/c=sinB/b
c=b×sinC/sinB=28.6×sin99.7°/sin32.7°=52.2
now, solve second triangle with A=132.4°
by angle sum property of triangle
C=180°-132.4°-32.7°=14.9°
use law of sine
c=b×sinC/sinB=28.6×sin14.9°/sin32.7°=13.6
so, other values of triangle 1 are
A=47.6°, C=99.7° and c=52.2cm
values of second triangle are
A=132.4°, C=14.9° and c=13.6cm
to find the area use heron's formula
s=(a+b+c)/2 , A=√[s(s-a)(s-b)(s-c)]
here, a=37.5, b=28.6 and c=52.2 (for first triangle)
s=(37.5+28.6+52.2)/2=59.2
s-a=59.2-37.5=21.7
s-b=59.2-28.6=30.6
s-c=59.2-52.2=7
so, area=A=√[59.2×21.7×30.6×7]=√275169.88=524.6 (cm)^2
for second triangle
a=37.5 , b=28.6 and c=13.6
s=(37.5+28.6+13.6)/2=39.9
s-a=39.9-37.5=2.4
s-b=39.9-28.6=11.3
s-c=39.9-13.6=26.3
so, area=A=√[39.6×2.4×11.3×26.3]=√28423.3=168.6 cm^2
b)a=4.1in, b=9.8in, c=6.2in
first of all area by heron's formula
s=(4.1+9.8+6.2)/2=10.1
s-a=10.1-4.1=6
s-b=10.1-9.8=0.3
s-c=10.1-6.2=3.9
A=√[10.1×6×0.3×3.9]=√70.551=8.4 in^2
now, by law of cosine
a^2=b^2+c^2-2bc×cosA
cos A=-(a^2-b^2-c^2)/2bc
cosA=-[(4.1)^2-(9.8)^2-(6.2)^2]/2×9.8×6.2
cosA=117.7/121.52=0.9685
A=arccos(0.9685)=14.4°
now, usw law of sine
sinA/a=sinB/b
sinB=b×sinA/a=9.8×sin14.4°/4.1=0.5944
B=arcsin(0.5944)=36.5°
use angle sum property of triangle
C=180°-14.4°-36.5°=129.1°
so, other values are
A=14.4°, B=36.5°, C=129.1° and Area=8.4 in^2