Question
Quttk 1; Thie JBes 50 playets panopajne {EnJn{Onecnlion Inr follors cofstuci frequency cstnenan Muel LOrerfuct rclative frenuenn dtributios Muk] Identity the median Mare] IdentiY the mode mafki pepa € cnant for deauen y dustnouuor Mats] Mkeriz darsc cass intenpl of 7. Stan tte fnt dass with Jorer Fmit of 20 ] Questkm 2: / sample CGPA oi S[udEnts #Iten ding cenain colkege are a5 tollovo Calcuhicna Standntddcyhton Marss] Qurstion 3; Springcrs sald 95 Anloncli mcn < s40t tOrtncnceubir price 0* S
Quttk 1; Thie JBes 50 playets panopajne {EnJn{Onecnlion Inr follors cofstuci frequency cstnenan Muel LOrerfuct rclative frenuenn dtributios Muk] Identity the median Mare] IdentiY the mode mafki pepa € cnant for deauen y dustnouuor Mats] Mkeriz darsc cass intenpl of 7. Stan tte fnt dass with Jorer Fmit of 20 ] Questkm 2: / sample CGPA oi S[udEnts #Iten ding cenain colkege are a5 tollovo Calcuhicna Standntddcyhton Marss] Qurstion 3; Springcrs sald 95 Anloncli mcn < s40t tOrtncnceubir price 0* S400_For te sprine slc: t surb ~Lrltcducco Sz00 Jnd 126 wete $1# #uul desrjrke; the ptke WJs reduced to 5100 Jnothc remain nc Suics Wuctc *ld What was tho woighted moan price ofan Antonthant pNk] (b) Springers DJid Sz00 sut Ior the 300 sb Commet on the store > prolit Aic-pccon[cccive: 525 commkycnictcn 07t #00 Mars] Gui: i = Oetten The chjir & the bojidol dretior I Thcte 0 > S07 (ijnce Ind (O pjny Mili ejcn Tnrolit 30? chincr willblcak Qcn anonvocnarccnelp moncyncronnt "Ucan additonrub find thc probabilty ic tompary ro: loe TTDT rer Quaricr Narksl Quban Scusons Putmbint scnke Its {a: feqvently Ferd fepjit MDaibility Ihc Itruck ubl Int P703eeaty Ic sccond {Nsck i$ Jvatlable 50,und {prebab Fnena 3oinIruclaatncilblc 2oetarne Norhd ncitner {ruck @ Jvadabk? Maree]


Answers
When data are summarized in a frequency distribution, the median can be found by first identifying the median class, which is the class that contains the median. We then assume that the values in that class are evenly distributed and we interpolate. Letting $n$ denote the sum of all class frequencies, and letting $m$ denote the sum of the class frequencies that precede the median class, the median can be estimated as shown below. (lower limit of median class) $+\left(\text { class width) }\left(\frac{\left(\frac{n+1}{2}\right)-(m+1)}{\text { frequency of median class }}\right)\right.$ Use this procedure to find the median of the frequency distribution given in Table $3-2$ on page $88 .$ How far is that result from the median found from the original list of McDonald's lunch service times listed in Data Set 25 "Fast Food" in Appendix B?