Question
011 012 413 021 02 023 031 032 033411 2031 012 2032 013 2as3 021 022 023 C = 031 032 033012 -Sar 033C13 3a2 031011 012 5011 013 021 022 023 021 022 5031 023 011 012 413 031 032 5a31 03 - 031 032 033 Given |A =5- Find the determinants of the following matrices011 012 013021 (22 023 a11 012 C131. [Bl2 ICl -3.|Dl =4.IF|5.|G] =6A|7.IA-3021
011 012 413 021 02 023 031 032 033 411 2031 012 2032 013 2as3 021 022 023 C = 031 032 033 012 -Sar 033 C13 3a2 031 011 012 5011 013 021 022 023 021 022 5031 023 011 012 413 031 032 5a31 03 - 031 032 033 Given |A =5- Find the determinants of the following matrices 011 012 013 021 (22 023 a11 012 C13 1. [Bl 2 ICl - 3.|Dl = 4.IF| 5.|G] = 6A| 7.IA -3021


Answers
Find the determinant of each of the following matrices: (a) $\left[\begin{array}{rrrr}1 & 2 & 2 & 3 \\ 1 & 0 & -2 & 0 \\ 3 & -1 & 1 & -2 \\ 4 & -3 & 0 & 2\end{array}\right]$ (b) $\left[\begin{array}{rrrr}2 & 1 & 3 & 2 \\ 3 & 0 & 1 & -2 \\ 1 & -1 & 4 & 3 \\ 2 & 2 & -1 & 1\end{array}\right]$
Okay, so we will find the interment off this matrix factor expansion across the first row. We're going to see more this contractor, this cup, this clip at the expansion. And what I mean, focus on this one. So it's positive, negative and positive. So positive one What times? By the determinant off 0110 which is going to be equal to one time zero times here, which gives you zero minus one times one giving you so this is a big one.
Okay, so we want to find that determines off this matrix by perfect expansion. Go back to expanding. By the first round. We ignore this zero and zero. So when we focus on the expansion off this one So this is positive, and this is negative. So be native one times, by the determinant off 100 and one, which is native one. I got one time, one giving you one Mona's zero times you're giving you zero. So this is what?